Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6

نویسندگان

  • Zhongtao Ding
  • Zhi Zhang
  • Juan Zhong
  • Di Luo
  • Jinyan Zhou
  • Jie Yang
  • Liang Xiao
  • Dan Shu
  • Hong Tan
چکیده

Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this 'stress hormone' is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea.

The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present...

متن کامل

Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and...

متن کامل

Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Abscisic Acid-Producing Botrytis cinerea

Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcab...

متن کامل

Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+)-Abscisic Acid Producing Ascomycete Botrytis cinerea

The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vec...

متن کامل

Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100

The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016